Atrial Septal Defect (ASD) Community
About This Community:

WELCOME to the ATRIAL SEPTAL DEFECT COMMUNITY: This Patient-To-Patient Community is for discussions relating to Atrial Septal Defect (ASD) which is a hole in the part of the septum that separates the atria (the upper chambers of the heart). This hole allows oxygen-rich blood from the left atrium to flow into the right atrium instead of flowing into the left ventricle as it should. This means that oxygen-rich blood gets pumped back to the lungs, where it has just been, instead of going to the body.

Font Size:
Background:
Blank
Blank
Blank

How the Heart Works

How the Heart Works

The heart is a muscle about the size of your fist. The heart works like a pump and beats about 100,000 times a day.

The heart has two sides, separated by an inner wall called the septum. The right side of the heart pumps blood to the lungs to pick up oxygen. Then, oxygen-rich blood returns from the lungs to the left side of the heart, and the left side pumps it to the body.

The heart has four chambers and four valves and is connected to various blood vessels. Veins are the blood vessels that carry blood from the body to the heart. Arteries are the blood vessels that carry blood away from the heart to the body.

A Healthy Heart Cross-Section

Illustration of the anatomy of the heart


The illustration shows a cross-section of a healthy heart and its inside structures. The blue arrow shows the direction in which oxygen-poor blood flows from the body to the lungs. The red arrow shows the direction in which oxygen-rich blood flows from the lungs to the rest of the body.

Heart Chambers

The heart has four chambers or "rooms."

  • The atria are the two upper chambers that collect blood as it comes into the heart.
  • The ventricles are the two lower chambers that pump blood out of the heart to the lungs or other parts of the body.

Heart Valves

Four valves control the flow of blood from the atria to the ventricles and from the ventricles into the two large arteries connected to the heart.

  • The tricuspid (tri-CUSS-pid) valve is in the right side of the heart, between the right atrium and the right ventricle.
  • The pulmonary (PULL-mun-ary) valve is in the right side of the heart, between the right ventricle and the entrance to the pulmonary artery, which carries blood to the lungs.
  • The mitral (MI-trul) valve is in the left side of the heart, between the left atrium and the left ventricle.
  • The aortic (ay-OR-tik) valve is in the left side of the heart, between the left ventricle and the entrance to the aorta, the artery that carries blood to the body.

Valves are like doors that open and close. They open to allow blood to flow through to the next chamber or to one of the arteries, and then they shut to keep blood from flowing backward.

When the heart's valves open and close, they make a "lub-DUB" sound that a doctor can hear using a stethoscope.

  • The first sound—the “lub”—is made by the mitral and tricuspid valves closing at the beginning of systole (SIS-toe-lee). Systole is when the ventricles contract, or squeeze, and pump blood out of the heart.
  • The second sound—the “DUB”—is made by the aortic and pulmonary valves closing at beginning of diastole (di-AS-toe-lee). Diastole is when the ventricles relax and fill with blood pumped into them by the atria.

Arteries

The arteries are major blood vessels connected to your heart.

  • The pulmonary artery carries blood pumped from the right side of the heart to the lungs to pick up a fresh supply of oxygen.
  • The aorta is the main artery that carries oxygen-rich blood pumped from the left side of the heart out to the body.
  • The coronary arteries are the other important arteries attached to the heart. They carry oxygen-rich blood from the aorta to the heart muscle, which must have its own blood supply to function.

Veins

The veins are also major blood vessels connected to your heart.

  • The pulmonary veins carry oxygen-rich blood from the lungs to the left side of the heart so it can be pumped out to the body. The part of the pulmonary veins that connects to the left atrium has recently been found to often be the source of the abnormal electrical signals that can begin AF.
  • The vena cava is a large vein that carries oxygen-poor blood from the body back to the heart.

For more information on how a healthy heart works, see the Diseases and Conditions Index article on How the Heart Works. This article contains animations that show how your heart pumps blood and how your heart’s electrical system works.


Author/Source: National Heart, Lung & Blood Institute, Division of the National Institutes of Health [NIH]

Retrieved: June 2008

Blank
Weight Tracker
Weight Tracker
Start Tracking Now
Go
BlankBlankBlank
Report
Rating
Category
Start Date
Jun 10, 2008
by jen_from_NY
Last Revision
Jun 10, 2008
by jen_from_NY